Le facteur de chute

le facteur de chute / fall factor

Le danger ne vient pas de la chute elle-même mais de la force du choc lors de l’arrêt;
Tout dépend du facteur de chute.

The danger does not come from the fall itself but from the force of the shock when stopping;
It all depends on the fall factor.

La théorie

Quand un corps chute il accumule de l’énergie. Quand la chute se termine, cette énergie accumulée – la force de choc – se réparti entre tous les éléments de la chaîne d’assurage. Donc, plus il y a d’éléments plus la force de choc sera répartie.
Cependant, la corde étant dynamique, c’est elle qui va absorber la plus grande partie de la force de choc.

Le facteur de chute est calculé en divisant la longueur de la chute par la longueur de la corde déployée entre celui qui assure et celui qui tombe.

Exemple 1

Curieusement, le premier relais intermédiaire est situé à 5 mètres au-dessus du relais principal. Je pars quand même. Manque de chance, je lâche prise juste avant d’avoir mousquetonné ma dégaine. Dans cet exemple, je tombe de 10 mètres alors que la longueur de la corde déployée n’est que de 5 mètres:
FACTEUR DE CHUTE = 10 / 5 = 2 …ET LE CHOC EST MAXIMAL (SOIT L’EQUIVALENT DE QUELQUES 12 kN).

Exemple 1bis

Je grimpe dans les règles de l’art et je place un premier point de renvoi à 2.5 mètres au-dessus du relais. Comme dans l’exemple 1, je lâche prise juste avant d’avoir mousquetonné le relais intermédiaire des 2.5 mètres. Dans ce cas, je ne tombe que de 5 mètres pour une longueur de corde déployée de 5 mètres:
FACTEUR DE CHUTE = 5 / 5 = 1 …ET LE CHOC EST 2 FOIS MOINDRE !

Exemple 2

Les relais intermédiaires sont tous à 5 mètres les uns au-dessus des autres. Tout va bien pour moi. Je suis à 30 mètres au-dessus du relais et je lâche encore prise juste avant d’avoir mousquetonné. Je tombe à nouveau de 10 mètres mais cette fois la longueur de la corde déployée est de 30 mètres:
FACTEUR DE CHUTE = 10 / 30 = 0.33 …ET LE CHOC, EN THEORIE, EST 6 FOIS MOINDRE QUE DANS L’EXEMPLE 1.

En théorie seulement, car en pratique c’est différent.

En pratique

Dans le terrain, le frottement de la corde dans les mousquetons et sur le rocher a pour effet de diminuer la longueur de corde efficace pour l’absorption du choc. Cela équivaut à augmenter le facteur de chute théorique.

Concrètement, un facteur de chute réel ne sera pratiquement jamais inférieur à 0.5

Pour réduire au maximum le facteur de chute réel, on peut utiliser une corde à double en mousquetonnant alternativement chaque brin pour réduire les frottements. Il est également possible d’utiliser une dégaine « Explose » qui se déchire en partie à partir d’une certaine force et réduit ainsi la force appliquée sur la chaîne d’assurage.

ATTENTION: En via-ferrata le facteur de chute peut être supérieur à 2.

Les incidents

Perte de matériel

S’il s’agit de matériel indispensable (crampons, piolet…) faire demi-tour si cela est encore possible.

Attention en installant le rappel ! La corde ne doit jamais être tenue par une seule personne, un faux mouvement et l’on se retrouve sans corde. Le mieux est d’assurer la corde pendant les manœuvres.

Si on perd le descendeur il est toujours possible de descendre, soit en utilisant le demi-cabestan sur mousqueton de sécurité, soit « à l’ancienne » (passez la corde en S autour du corps).

Coincement de corde

En premier lieu il faut faire en sorte que la corde ne se coince pas (ne jamais laisser de nœuds sur la corde, éviter qu’elle ne s’enfile dans une fissure etc…).

Si elle est coincée, ne pas aggraver la situation en tirant dessus inconsidérément.

 

Ne jamais remonter sur une corde coincée. Il faut escalader la paroi.

Chutes de pierres

Observer leur trajectoire et essayer de les éviter. Le sac peut servir de bouclier.

Chute d’un grimpeur

Ne pas céder à la panique. Prendre les dispositions nécessaires pour ne pas tomber soi-même.

Si possible mettre le blessé à l’abri des dangers objectifs, l’installer confortablement, le protéger du froid et lui donner du chaud à boire.

Organiser les secours.

Mauvais temps

Ne pas faire automatiquement demi-tour; il arrive souvent que le salut soit vers le haut. C’est la connaissance du massif, le sens de la montagne, et surtout une bonne préparation qui permettent de décider.

Itinéraire et passages délicats

Recherche de l’itinéraire

Regarder toujours au-delà de la longueur en cours.

Ne pas hésiter à aller regarder derrière une arête ou à explorer une vire sur toute sa longueur. Le topo-guide ne doit être qu’un dernier recours.
Penser aux premiers ascensionnistes qui n’avaient pas de description de la course.

Éviter de se lancer vers n’importe quel piton ou anneau de corde; ils peuvent être les témoins d’erreur ou de retraite.

Rester dans les difficultés en accord avec les cotations de la course.

Les passages délicats

Traversées

Multiplier les assurages intermédiaires pour éviter que celui qui tombe ne fasse un trop grand pendule.

Lorsqu’une traversée facile suit un passage d’escalade difficile le premier de cordée place un point d’assurage au début de la traversée pour assurer le second dans les difficultés.

Si un passage difficile suit une traversée, le premier de cordée ne mousquetonne qu’un brin de corde au pied du passage difficile (dans le cas ou l’on grimpe avec une corde à double).

Pendule

Toujours s’assurer qu’un retour éventuel est possible.

Voir le désastre de la face nord de l’Eiger lors de la première tentative de 1936. Cette tentative a été infructueuse et les quatre alpinistes sont morts lors de la descente ne pouvant pas faire en sens inverse la fameuse traversée Hinterstoisser.

Descente

Le premier à descendre pose les points d’assurage pour le second. Le second peut se faire assurer en passant la corde derrière un becquet

Couloirs délités

Faire relais sous un bloc surplombant ou au pied d’un ressaut. En marche simultanée, rester très près les uns des autres.

Pentes avalancheuses

Ne pas couper la pente (ou bien le plus haut possible). Descendre en suivant la ligne de plus grande pente (comme à ski).

Agressions liées à l’altitude

Dans ces pages nous allons traiter des agressions subies par l’organisme et des moyens à mettre en œuvre pour réaliser un nouvel équilibre compatible avec la vie en altitude.

♦ Augmentation du froid pouvant provoquer des lésions

♦ Baisse de la pression atmosphérique pouvant provoquer le « mal des montagnes »

♦ Baisse de l’humidité atmosphérique

♦ Augmentation du rayonnement

Le froid

La sensation de froid est due à la vitesse de refroidissement de la surface de la peau.

Trois facteurs influent sur la vitesse de refroidissement : la température, la force du vent, et l’humidité de l’air.

La température baisse en moyenne de 0.8 degré par 100 mètres de dénivelé positif.

Le vent s’intensifie avec l’altitude.

En revanche, l’humidité de l’air diminue.
Vers 2000 mètres l’humidité relative a diminué de moitié par rapport au niveau de la mer, et des trois-quarts à 4000 mètres. Ce facteur de refroidissement diminue donc au fur et à mesure que l’on monte. Il faut savoir que la conduction thermique de l’eau est 20 fois supérieure à celle de l’air, ce qui explique qu’un froid humide est plus difficile à supporter qu’un froid sec.

L’homme ne peut vivre que dans une fourchette de température très étroite autour de 37 degrés. Il doit donc constamment gérer son capital thermique. Quand sous l’effet du froid les pertes de chaleur dépassent les gains, l’organisme va réagir de deux façons, il va : limiter les pertes en diminuant le débit sanguin cutané, et augmenter la production interne de chaleur.

Diminution du débit sanguin cutané

La peau contrôle en permanence les échanges thermiques de notre corps avec l’extérieur. Pour préserver les organes vitaux d’une baisse dangereuse de température, la peau va diminuer son irrigation sanguine. Le bénéfice est double: (1) une peau froide constitue une barrière efficace contre les pertes de chaleur, car moins irriguée elle est moins conductrice de chaleur; (2) le sang ne circulant plus en surface et dans les extrémités, il se refroidit moins.

Production interne de chaleur

La thermogenèse peut être volontaire. L’exercice physique est un bon moyen de se réchauffer mais il consomme de l’énergie. Les aliments apportent en plus de leur valeur nutritionnelle un gain de chaleur à la digestion.
Elle peut être aussi involontaire. Le frisson est une contraction musculaire involontaire visant à produire de la chaleur. La sécrétion hormonale intervient dans la lutte contre le froid en augmentant les métabolismes.

Les lésions dues au froid

  • Gelures
  • Hypothermie

Les gelures

La gelure est une brûlure par le froid. Les gelures affectent « l’écorce » du corps, c’est à dire la peau et les extrémités. Elles ne menacent pas directement la vie. En fait, c’est comme si « l’écorce » se sacrifiait pour préserver les organes vitaux.

Ce qui fait le danger des gelures c’est qu’elles s’installent sans prévenir, de façon progressive et insidieuse. Lorsqu’il y a risque de gelure, chaque membre de la cordée doit observer ses compagnons afin de déceler une éventuelle apparition de plaques blanchâtres sur le nez, les joues ou les oreilles. Ces gelures, si elles sont fréquentes ne sont jamais très graves.

Plus graves sont les gelures des doigts et des orteils. Il faut se souvenir que lorsqu’il y a du vent des gelures peuvent survenir assez rapidement. L’humidité est un facteur aggravant.

Températures ressenties en fonction du vent
Vitesse du vent (Km/h)
Température (°C)
0 5 0 -5 -10 -15 -20
5 4 -2 -7 -13 -19 -24
10 3 -3 -9 -15 -21 -27
15 2 -4 -11 -17 -23 -29
20 1 -5 -12 -18 -24 -30
30 0 -7 -14 -20 -26 -33
50 -2 -8 -15 -22 -29 -35
70 -2 -9 -16 -23 -30 -37

-10 à -24: La peau nue exposée ressent le froid. Risque d’hypothermie si l’exposition est de longue durée et sans protection. Porter plusieurs couches de vêtements, un chapeau et des gants.

-25 à -37: Risque de gel de la peau (gelure grave). Surveiller tout engourdissement ou blanchiment de la figure, des doigts, des oreilles et du nez. Risque d’hypothermie si l’exposition est d’assez longue durée et sans protection. Porter plusieurs couches de vêtements, un bonnet et des gants chauds. Couvrir le visage.

Ne jamais frictionner des membres gelés car les tissus sont fragiles, bien qu’ils soient insensibles. Ne jamais réchauffer à la chaleur d’une flamme car la température est trop élevée.
Une règle importante: Il ne faut entreprendre le réchauffement d’un membre gelé que si l’on est sûr de pouvoir entretenir un réchauffage constant et suffisant jusqu’à l’évacuation. Un réchauffage lent et insuffisant, souvent suivi de re-gelure fait encourir de sérieuses complications. Il faut savoir qu’une extrémité réchauffée est inutilisable et le montagnard devient un impotent.
Au vu des expériences vécues et des constatations médicales, on peut marcher longtemps avec des pieds gelés sans risquer davantage de complications.

Ne pas hésiter à organiser l’évacuation

L’hypothermie

L’hypothermie commence lorsque la production de chaleur par l’organisme ne couvre plus les pertes caloriques. Des lésions par hypothermie peuvent donc survenir par des températures supérieures à zéro degré. Il faut se souvenir que la perte de chaleur corporelle n’est pas seulement fonction de la température, mais surtout du vent et dans une moindre mesure de l’humidité.
Il est vital de rester calme et bien maîtriser la situation afin d’éviter un gaspillage de calories. Les décharges d’adrénaline dues au stress et à la panique brûlent très rapidement les réserves de l’organisme. Il est arrivé que des randonneurs peu expérimentés perdus en moyenne montagne meurent en une nuit. Boire, manger et rester calme aideront à sortir de cette mauvaise situation.

La perte de chaleur moyenne, au repos et sans vent, est estimée à 2.8 degrés/heure dans la neige et 4.1 degrés heure en plein air. Après une heure trois quart passé dans la neige, sous une avalanche par exemple, le corps est à 32 degrés, température à laquelle commencent les perturbations physiques. Après quatre heures un quart, le corps est à 25 degrés et il y a risque de mort.

Le diagnostic est en général évident. Jusqu’à 35 degrés, l’individu reste conscient et peut décrire ses sensations. Au dessous de 33 degrés, les idées ne sont plus très claires. La peau est froide, le visage livide, le pouls est faible et rapide. Par moment le malade est agité de tremblements.

Il faut tout de suite soustraire le malade du froid. Lui mettre des habits secs, se mettre avec lui dans un duvet préchauffé, lui donner des boissons chaudes et sucrées, placer des gourdes d’eau chaude sous les aisselles et entre les cuisses. Surtout éviter un brassage rapide du volume sanguin entre la périphérie froide et le centre resté plus chaud. Pas de frictions, pas de mouvements et… pas d’alcool.

L’hypothermie est une urgence médicale !

Baisse de la pression atmosphérique

Lorsque l’altitude augmente la pression atmosphérique diminue et, parallèlement, celle de l’oxygène aussi. A 2500 mètres, la pression de l’oxygène n’est plus que les trois quarts de ce qu’elle est au niveau de la mer, à 5500 mètres la moitié et à 8500 mètres le tiers. Or, la pression est la seule force qui fait progresser l’oxygène de l’air ambiant aux cellules de l’organisme.

Pour éviter l’hypoxie (oxygénation insuffisante) et les risques de mal des montagnes, une adaptation des mécanismes physiologiques va s’effectuer au niveau respiratoire avec une augmentation du volume de l’air inspiré, au niveau sanguin avec une augmentation du nombre de globules rouges et enfin au niveau cellulaire, en permettant une meilleure libération de l’oxygène de son transporteur.

Le mal des montagnes regroupe un ensemble de symptômes qui se manifestent à des degrés divers selon les personnes. Il se manifeste généralement par des maux de tête, des nausées, un manque d’appétit, des étourdissements et des insomnies. Dans la majorité des cas, tout rentre dans l’ordre au bout de quelques jours.
L’apparition de vomissements, la diminution du débit urinaire et la persistance de violents maux de tête malgré l’aspirine, sont les manifestations d’un oedème cérébral.
Des difficultés respiratoires, la toux, un sentiment d’oppression dans la cage thoracique, la faiblesse et, finalement, la fièvre sont les manifestations d’un oedème pulmonaire.

Le mal aigu des montagnes (le MAM) peut affecter les personnes à partir d’une altitude de 2000 mètres déjà. Les symptômes apparaissent de 4 à 8 heures après l’arrivée en altitude. Ils évoluent en 3 à 4 jours. Les enfants sont particulièrement vulnérables.

Pour prévenir le MAM il faut boire abondamment et avoir une alimentation de type hyper glucidique. Une progression lente est le meilleur moyen de minimiser les risques.

En cas de doute, il faut impérativement descendre,
à une altitude inférieure d’au moins 500 mètres.

Baisse de l’humidité atmosphérique

La quantité de vapeur d’eau contenue dans l’air diminue avec l’altitude. A 4000 mètres, la tension de vapeur d’eau ne représente plus que le quart de sa valeur au niveau de la mer. Si on ajoute à cela que le volume d’eau contenu dans l’air est plus faible aux températures basses qu’aux températures élevées, il devient manifeste que l’air qui entoure le montagnard est sec. Cet air sec augmente la déshydratation contre laquelle l’organisme n’a aucune protection. Cet air sec et froid est aussi à l’origine de l’irritation des voies respiratoires et des maux de gorge.

La déshydratation a une conséquence directe sur la performance physique.

Une perte d’eau de 2 % du poids du corps (soit un litre et demi pour 80 kilos)
diminue la performance de 20 %

Augmentation du rayonnement

Les rayons dont il faut se protéger sont les Ultra-Violets (UV). Il y a trois sortes d’UV: les UVC, UVB et UVA par ordre décroissant de nocivité. Les UVC sont arrêtés par l’atmosphère et ne nous atteignent pratiquement pas. Par contre toute exposition prolongée aux UVB et UVA va provoquer des brûlures de la peau et des yeux.

Plus on s’élève, plus la couche de protection atmosphérique diminue et le rayonnement UVB augmente. L’intensité du rayonnement augmente de 4% tous les 300 mètres.
En outre, plus le soleil est bas sur l’horizon, plus la traversée atmosphérique est longue et moins intense est le rayonnement qui parvient jusqu’au sol. Il y a donc un maximum d’UVB entre 11 h et 14 h. Les rayons ne tombent pas tout droit sur la terre. Ils sont diffusés par l’air, les particules de vapeur d’eau et de poussière.
Si les alto-cumulus de moyenne altitude absorbent la majeure partie des UV, les cirrus de haute altitude qui donnent un ciel gris très lumineux transmettent presque autant d’UV qu’un ciel clair. La réflexion du sol dépend de sa nature, elle peut être importante (jusqu’à 90% sur la neige).