objectif montagne.ch

votre site sur la pratique de l’alpinisme

your mountaineering website

Vous voulez aller plus haut et revenir en toute sécurité ? … Il ne faut pas en faire toute une montagne  !

Do you want to go higher and come back safely ? … There’s no need to make a mountain out of a molehill !

Énergie musculaire / Muscular energy

Énergie musculaire / Muscular energy

Energie musculaire

On ne peut dissocier l’effort physique du contexte global de l’alpinisme. L’activité alpine entraîne une dépense accrue d’énergie et une adaptation des différentes fonctions de l’organisme. Il faut savoir que la marche rapide consomme six fois plus de calories que la station debout prolongée, et l’escalade dix fois plus. En outre, il y a perte d’eau avec perturbation de l’équilibre en sels minéraux. Afin de mieux comprendre l’importance des moyens dont nous disposons pour lutter contre l’agression de l’effort physique sur notre organisme et qui se traduit par la fatigue, il est nécessaire de connaître le processus de formation de l’énergie musculaire.

L’ensemble de l’appareil musculaire représente près du tiers du poids du corps. Le muscle est une machine qui transforme l’énergie chimique en énergie mécanique qui est la force motrice du mouvement. C’est le dernier maillon d’une chaîne de fonctions qui regroupe le coeur, le système nerveux, la thermorégulation, l’apport énergétique, l’oxygénation et l’évacuation des déchets. La réaction qui produit l’énergie musculaire peut se résumer de la façon suivante:

Nutriments + oxygène = énergie mécanique + chaleur + déchets

Les nutriments sont les combustibles, glucides, protides et lipides, produits par la digestion des aliments.

L’oxygène permet l’oxydation des nutriments et la production de l’énergie (processus énergétique aérobie). Certains efforts brefs et violents peuvent se faire en l’absence d’oxygène (processus énergétique anaérobie).

L’énergie mécanique produite par la contraction musculaire est la force motrice du mouvement.

Comme les moteurs à explosion, la machine musculaire a un mauvais rendement. Seulement 25% de l’énergie musculaire est transformée en énergie mécanique alors que le reste est transformé en chaleur. Cette chaleur est transportée vers la peau par le sang et c’est l’évaporation de la sueur qui permet d’éliminer les calories superflues. La perte hydrique engendrée par la sueur devra être compensée par la boisson.

Les déchets sont les produits finaux des réactions énergétiques. C’est l’acide lactique lors de réactions de type anaérobie. L’accumulation d’acide lactique provoque les crampes. C’est également le gaz carbonique, déchet classique des réactions de type aérobie.

Pour le montagnard qui fourni en général des efforts soutenus de moyenne puissance, la voie aérobie de production de l’énergie est la plus importante; c’est la voie énergétique de l’endurance. En présence d’oxygène, toutes les substances nutritives sont utilisées jusqu’à leur dégradation complète.

(Glucides, Lipides et Protides) + Oxygène = Energie + CO2 + H2O + Chaleur

Cependant, la mise en place de la voie aérobie est retardée par l’inertie du système d’échanges gazeux. Elle est déclenchée au début de l’effort mais ne devient efficace qu’après quelques minutes.
En début d’effort l’énergie est produite par la voie anaérobie. Il existe deux sources de production d’énergie en l’absence d’oxygène. La première résulte de la dégradation du phosphagène (ou créatine phosphate) et la deuxième de la dégradation du glycogène avec production d’acide lactique. Le glycogène est le nom donné aux glucides de réserve stockés dans les muscles et le foie.

Le phosphagène est la substance de démarrage. Son intérêt est la faculté de libérer instantanément une grande quantité d’énergie, l’ATP (adénosine triphosphate), à la puissance maximale selon le processus suivant:

ATP = ADP (adénosine phosphate) + acide phosphorique + énergie

Mais toute dégradation d’ATP exige sa réparation dans le but d’entretenir la prochaine contraction musculaire. Or cette réparation se fait au dépend du glucose, d’où l’importance des glucides dans la production de l’énergie musculaire.

Muscular energy

Physical effort cannot be dissociated from the overall context of mountaineering. Alpine activity involves an increased expenditure of energy and an adaptation of the body’s various functions. It’s worth noting that brisk walking consumes six times more calories than prolonged standing, and climbing ten times more. What’s more, water is lost and the body’s balance of mineral salts is upset. In order to better understand the importance of the means available to us to fight against the aggression of physical effort on our body, which results in fatigue, it is necessary to understand the process of muscular energy formation.

The muscular system as a whole accounts for almost a third of the body’s weight. The muscle is a machine that transforms chemical energy into mechanical energy, which is the driving force behind movement. It is the last link in a chain of functions that includes the heart, the nervous system, thermoregulation, energy supply, oxygenation and waste evacuation. The reaction that produces muscular energy can be summarised as follows:

Nutrients + oxygen = mechanical energy + heat + waste

Nutrients are the fuels  (carbohydrates, proteins and fats) produced by the digestion of food.

Oxygen enables nutrients to be oxidised and energy to be produced (aerobic energy process). Certain brief and violent efforts can be made in the absence of oxygen (anaerobic energy process).

The mechanical energy produced by muscular contraction is the driving force behind movement.

Like internal combustion engines, the muscular machine is inefficient. Only 25% of muscular energy is transformed into mechanical energy, while the rest is transformed into heat. This heat is transported to the skin by the blood and it is the evaporation of sweat that eliminates the superfluous calories. The loss of water through sweat must be compensated for by drinking.

Waste products are the end products of energy reactions. This is lactic acid in anaerobic reactions. The accumulation of lactic acid causes cramps. It is also carbon dioxide, the classic waste product of aerobic reactions.

For mountaineers, who generally make sustained, medium-power efforts, the aerobic energy production pathway is the most important; this is the endurance energy pathway. In the presence of oxygen, all the nutrients are used up until they are completely broken down.

(Carbohydrates, Fats and Proteins) + Oxygen = Energy + CO2 + H2O + Heat.

However, the aerobic pathway is delayed by the inertia of the gas exchange system. It is triggered at the start of exercise but only becomes effective after a few minutes.
At the start of exercise, energy is produced by the anaerobic pathway. There are two sources of energy production in the absence of oxygen. The first results from the breakdown of phosphagen (or creatine phosphate) and the second from the breakdown of glycogen with the production of lactic acid. Glycogen is the name given to the reserve carbohydrates stored in the muscles and liver.

Phosphagen is the starter substance. Its advantage is its ability to instantly release a large quantity of energy, ATP (adenosine triphosphate), at maximum power, according to the following process:

ATP = ADP (adenosine phosphate) + phosphoric acid + energy

But any degradation of ATP requires repair in order to maintain the next muscle contraction. But this repair depends on glucose, hence the importance of carbohydrates in muscle energy production.

Énergie musculaire / Muscular energy

Constitution du muscle / Muscle composition

Constitution du muscle

Le tissu musculaire est constitué de fibres assemblées en faisceaux. Il y a deux types de fibres: les fibres à contraction lente adaptées à l’effort d’intensité moyenne de longue durée, et les fibres à contraction rapide capables de soutenir des efforts violents de brève durée. Chaque muscle contient les deux types de fibres selon un pourcentage qui dépend de la spécialité et du niveau d’entraînement.

Les fibres à contraction lente sont richement vascularisées pour permettre un meilleur afflux d’oxygène et de nutriments. Elles contiennent de nombreuses enzymes indispensables au processus énergétique aérobie. Les muscles où prédomine ce type de fibres sont adaptés à l’effort long, régulier, d’une puissance toujours inférieure aux possibilités maximales – c’est l’endurance. La randonnée à pied ou à ski, l’ascension mixte de difficulté moyenne, font appel à ce type de muscles.

Les fibres à contraction rapide sont particulièrement bien adaptées au métabolisme anaérobie. Ce sont les fibres de l’effort bref d’intensité maximale – c’est la résistance. Elles sont mises à contribution lors de l’escalade technique soutenue, de passages athlétiques en ascension mixte, de remontée de couloirs, goulottes et cascades de glace.

Muscle composition

Muscle tissue is made up of fibres assembled in bundles. There are two types of fibre: slow contraction fibres adapted to long-duration, medium-intensity effort, and fast contraction fibres capable of sustaining short-duration, violent effort. Each muscle contains both types of fibre in a percentage that depends on the speciality and level of training.

Slow-twitch fibres are richly vascularised to allow a better influx of oxygen and nutrients. They contain numerous enzymes essential to the aerobic energy process. Muscles in which this type of fibre predominates are adapted to long, regular exertion, with a power level that is always less than the maximum possible – this is endurance. Hiking, skiing and mixed climbs of moderate difficulty call on this type of muscle.

Fast-twitch fibres are particularly well suited to anaerobic metabolism. These are the fibres for brief, maximum-intensity efforts – resistance. They are put to good use during sustained technical climbing, athletic passages in mixed climbs, ascent of couloirs, gullies and icefalls.

Énergie musculaire / Muscular energy

Effort physique / Physical effort

l’Effort physique

On ne peut dissocier l’effort physique du contexte global de l’alpinisme. L’activité alpine entraîne une dépense accrue d’énergie et une adaptation des différentes fonctions de l’organisme. Il faut savoir que la marche rapide consomme six fois plus de calories que la station debout prolongée, et l’escalade dix fois plus. En outre, il y a perte d’eau avec perturbation de l’équilibre en sels minéraux.

Afin de mieux comprendre l’importance des moyens dont nous disposons pour lutter contre l’agression de l’effort physique sur notre organisme et qui se traduit par la fatigue, il est nécessaire de connaître le processus de formation de l’énergie musculaire.

—Énergie musculaire—

 

L’ensemble de l’appareil musculaire représente près du tiers du poids du corps. Le muscle est une machine qui transforme l’énergie chimique en énergie mécanique qui est la force motrice du mouvement. C’est le dernier maillon d’une chaîne de fonctions qui regroupe le coeur, le système nerveux, la thermorégulation, l’apport énergétique, l’oxygénation et l’évacuation des déchets. La réaction qui produit l’énergie musculaire peut se résumer de la façon suivante:

Nutriments + oxygène = énergie mécanique + chaleur + déchets

Les nutriments sont les combustibles, glucides, protides et lipides, produits par la digestion des aliments.

L’oxygène permet l’oxydation des nutriments et la production de l’énergie (processus énergétique aérobie). Certains efforts brefs et violents peuvent se faire en l’absence d’oxygène (processus énergétique anaérobie).

L’énergie mécanique produite par la contraction musculaire est la force motrice du mouvement.

Comme les moteurs à explosion, la machine musculaire a un mauvais rendement. Seulement 25% de l’énergie musculaire est transformée en énergie mécanique alors que le reste est transformé en chaleur. Cette chaleur est transportée vers la peau par le sang et c’est l’évaporation de la sueur qui permet d’éliminer les calories superflues. La perte hydrique engendrée par la sueur devra être compensée par la boisson.

Les déchets sont les produits finaux des réactions énergétiques. C’est l’acide lactique lors de réactions de type anaérobie. L’accumulation d’acide lactique provoque les crampes. C’est également le gaz carbonique, déchet classique des réactions de type aérobie.

Pour le montagnard qui fourni en général des efforts soutenus de moyenne puissance, la voie aérobie de production de l’énergie est la plus importante; c’est la voie énergétique de l’endurance. En présence d’oxygène, toutes les substances nutritives sont utilisées jusqu’à leur dégradation complète.

Glucides, Lipides et Protides + Oxygène = Energie + CO2 + H2O + Chaleur

Cependant, la mise en place de la voie aérobie est retardée par l’inertie du système d’échanges gazeux. Elle est déclenchée au début de l’effort mais ne devient efficace qu’après quelques minutes.
En début d’effort l’énergie est produite par la voie anaérobie. Il existe deux sources de production d’énergie en l’absence d’oxygène. La première résulte de la dégradation du phosphagène (ou créatine phosphate) et la deuxième de la dégradation du glycogène avec production d’acide lactique. Le glycogène est le nom donné aux glucides de réserve stockés dans les muscles et le foie.

Le phosphagène est la substance de démarrage. Son intérêt est la faculté de libérer instantanément une grande quantité d’énergie, l’ATP (adénosine triphosphate), à la puissance maximale selon le processus suivant:

ATP = ADP (adénosine phosphate) + acide phosphorique + énergie

Mais toute dégradation d’ATP exige sa réparation dans le but d’entretenir la prochaine contraction musculaire. Or cette réparation se fait au dépend du glucose, d’où l’importance des glucides dans la production de l’énergie musculaire.

—Constitution du muscle—

 

Le tissu musculaire est constitué de fibres assemblées en faisceaux. Il y a deux types de fibres: les fibres à contraction lente adaptées à l’effort d’intensité moyenne de longue durée, et les fibres à contraction rapide capables de soutenir des efforts violents de brève durée. Chaque muscle contient les deux types de fibres selon un pourcentage qui dépend de la spécialité et du niveau d’entraînement.

Les fibres à contraction lente sont richement vascularisées pour permettre un meilleur afflux d’oxygène et de nutriments. Elles contiennent de nombreuses enzymes indispensables au processus énergétique aérobie. Les muscles où prédomine ce type de fibres sont adaptés à l’effort long, régulier, d’une puissance toujours inférieure aux possibilités maximales – c’est l’endurance. La randonnée à pied ou à ski, l’ascension mixte de difficulté moyenne, font appel à ce type de muscles.

Les fibres à contraction rapide sont particulièrement bien adaptées au métabolisme anaérobie. Ce sont les fibres de l’effort bref d’intensité maximale – c’est la résistance. Elles sont mises à contribution lors de l’escalade technique soutenue, de passages athlétiques en ascension mixte, de remontée de couloirs, goulottes et cascades de glace.

—Alimentation—

 

Lors d’une marche en montagne les pertes caloriques s’élèvent à environ 350 kcal/heure, auxquelles il faut ajouter 100 kcal/heure pour lutter contre le froid. Pour une course de 7 heures, la perte calorique est donc de 7 x 450 kcal/heure soit 3150 kcal. A cela il faut ajouter la perte due à l’activité journalière restante, soit quelques 1500 Kcal.

Il est difficile, du fait de la diversité des facteurs qui interviennent, d’établir avec précision les besoins caloriques de la thermos-régulation. D’après les études de Johnson et Kark, le besoin calorique entraîné par la thermos-régulation, devrait être augmenté ou diminué de 5% lorsque la température variait de + ou – 10 degrés par rapport à une moyenne considérée comme normale.

Les 4650 kcal de perte seront compensées le soir ou le lendemain par une alimentation plus abondante et plus riche. Cependant, l’apport journalier peut difficilement dépasser 4000 kcal d’où un déficit calorique au-delà de 5 à 6 heures d’effort, déficit comblé par un prélèvement sur la masse graisseuse.

S’il est admis que l’alimentation de l’effort doit être riche en hydrates de carbones (glucides), leur importance varie selon les spécialistes. A mon avis, la proportion des glucides, des lipides et des protides n’est pas la même selon que l’on fait une course de un à deux jours ou une course de plusieurs jours en altitude. A titre indicatif on pourrait donner les proportions suivantes:

Nutriments une semaine 2 jours
Glucides 70% 55%
Lipides 20% 30%
Protides 10% 15%

En outre, il est important de respecter les rapports suivants:

Calories des sucres raffinés / Calories totales < ou = à 1/10

Protides animaux / Protides végétaux > ou = 1

Lipides animaux / Lipides végétaux < ou = 3/5

De nombreux ouvrages traitant de la diététique de l’effort proposent des menus et publient des tableaux d’équivalence calorique. Reproduire cette information nous conduirait au-delà du but de ce site. Il suffit de donner les quelques conseils suivants.

La veille d’une course consommer de préférence des glucides lents sous la forme de pâtes (pas trop cuites), de riz ou de pommes de terre.

Le matin de la course prendre des farineux (flocons d’avoine, Bircher muesli, pain complet, etc.), du fromage, des oléagineux (noix, amandes…), et surtout boire suffisamment.

Pendant la course, consommer des glucides rapides (surtout fructose) sous forme de fruits secs, de pâtes de fruits, de dattes, de tablettes agglomérées, etc., et… boire régulièrement ! Au retour de la course, reconstituer les réserves en viande et légumes frais.

Mais surtout évitez de constituer votre menu uniquement en fonction des recommandations diététiques, manger selon ses goûts et son envie est également important.

—Ration alimentaire—

 

On peut déterminer la constitution d’une ration alimentaire en fonction des besoins caloriques estimés.

En dehors des courses, un montagnard devrait absorber 3500 kcal/jour. Le tableau ci-dessous donne une indication sur la quantité (en grammes) de nutriments à consommer.

Rations en fonction des nutriments
Nutriments Répartition kcal kcal/g Grammes
Glucides 55% 1950 4 480
Lipides 30% 1050 9 120
Protides 15% 525 4 130
Total 100% 3500

Pour un séjour en altitude excédant deux à trois jours il est bon de prévoir un apport complémentaire de sels (sodium, potassium) et éventuellement de vitamines B1, B2 et C.

—Boisson—

 

Pendant l’effort il est recommandé de boire 100 à 120 ml de liquide toutes les 20 minutes. On peut préconiser un mélange d’eau (1 litre) + citrons pressés (2) + miel (4 cuillères à café) + sel (200 à 400 mg).

Se souvenir que boire et plus important que manger. Pour une course engagée, prendre un petit réchaud afin de faire fondre la neige et boire chaud. Une ration de survie au fond du sac peut aussi rendre service.

Physical effort

Physical effort cannot be dissociated from the overall context of mountaineering. Alpine activity involves an increased expenditure of energy and an adaptation of the body’s various functions. It’s worth noting that brisk walking consumes six times more calories than prolonged standing, and climbing ten times more. What’s more, water is lost and the body’s balance of mineral salts is upset.

In order to better understand the importance of the means available to us to fight against the aggression of physical effort on our organism, which results in fatigue, it is necessary to understand the process by which muscular energy is formed.

—Muscular energy—

L’ensemble de l’appareil musculaire représente près du tiers du poids du corps. Le muscle est une machine qui transforme l’énergie chimique en énergie mécanique qui est la force motrice du mouvement. C’est le dernier maillon d’une chaîne de fonctions qui regroupe le coeur, le système nerveux, la thermorégulation, l’apport énergétique, l’oxygénation et l’évacuation des déchets. La réaction qui produit l’énergie musculaire peut se résumer de la façon suivante:

Nutriments + oxygène = énergie mécanique + chaleur + déchets

Les nutriments sont les combustibles, glucides, protides et lipides, produits par la digestion des aliments.

L’oxygène permet l’oxydation des nutriments et la production de l’énergie (processus énergétique aérobie). Certains efforts brefs et violents peuvent se faire en l’absence d’oxygène (processus énergétique anaérobie).

L’énergie mécanique produite par la contraction musculaire est la force motrice du mouvement.

Comme les moteurs à explosion, la machine musculaire a un mauvais rendement. Seulement 25% de l’énergie musculaire est transformée en énergie mécanique alors que le reste est transformé en chaleur. Cette chaleur est transportée vers la peau par le sang et c’est l’évaporation de la sueur qui permet d’éliminer les calories superflues. La perte hydrique engendrée par la sueur devra être compensée par la boisson.

Les déchets sont les produits finaux des réactions énergétiques. C’est l’acide lactique lors de réactions de type anaérobie. L’accumulation d’acide lactique provoque les crampes. C’est également le gaz carbonique, déchet classique des réactions de type aérobie.

Pour le montagnard qui fourni en général des efforts soutenus de moyenne puissance, la voie aérobie de production de l’énergie est la plus importante; c’est la voie énergétique de l’endurance. En présence d’oxygène, toutes les substances nutritives sont utilisées jusqu’à leur dégradation complète.

Glucides, Lipides et Protides + Oxygène = Energie + CO2 + H2O + Chaleur

Cependant, la mise en place de la voie aérobie est retardée par l’inertie du système d’échanges gazeux. Elle est déclenchée au début de l’effort mais ne devient efficace qu’après quelques minutes.
En début d’effort l’énergie est produite par la voie anaérobie. Il existe deux sources de production d’énergie en l’absence d’oxygène. La première résulte de la dégradation du phosphagène (ou créatine phosphate) et la deuxième de la dégradation du glycogène avec production d’acide lactique. Le glycogène est le nom donné aux glucides de réserve stockés dans les muscles et le foie.

Le phosphagène est la substance de démarrage. Son intérêt est la faculté de libérer instantanément une grande quantité d’énergie, l’ATP (adénosine triphosphate), à la puissance maximale selon le processus suivant:

ATP = ADP (adénosine phosphate) + acide phosphorique + énergie

Mais toute dégradation d’ATP exige sa réparation dans le but d’entretenir la prochaine contraction musculaire. Or cette réparation se fait au dépend du glucose, d’où l’importance des glucides dans la production de l’énergie musculaire.

—Muscle constitution—

Le tissu musculaire est constitué de fibres assemblées en faisceaux. Il y a deux types de fibres: les fibres à contraction lente adaptées à l’effort d’intensité moyenne de longue durée, et les fibres à contraction rapide capables de soutenir des efforts violents de brève durée. Chaque muscle contient les deux types de fibres selon un pourcentage qui dépend de la spécialité et du niveau d’entraînement.

Les fibres à contraction lente sont richement vascularisées pour permettre un meilleur afflux d’oxygène et de nutriments. Elles contiennent de nombreuses enzymes indispensables au processus énergétique aérobie. Les muscles où prédomine ce type de fibres sont adaptés à l’effort long, régulier, d’une puissance toujours inférieure aux possibilités maximales – c’est l’endurance. La randonnée à pied ou à ski, l’ascension mixte de difficulté moyenne, font appel à ce type de muscles.

Les fibres à contraction rapide sont particulièrement bien adaptées au métabolisme anaérobie. Ce sont les fibres de l’effort bref d’intensité maximale – c’est la résistance. Elles sont mises à contribution lors de l’escalade technique soutenue, de passages athlétiques en ascension mixte, de remontée de couloirs, goulottes et cascades de glace.

—Nutrition—

 

When walking in the mountains, you lose around 350 kcal/hour, to which you must add 100 kcal/hour to combat the cold. For a 7-hour run, the calorie loss is therefore 7 x 450 kcal/hour, i.e. 3150 kcal. To this must be added the loss due to the remaining daily activity, i.e. some 1500 kcal.

Because of the diversity of factors involved, it is difficult to establish the precise calorific requirements of thermoregulation. According to studies by Johnson and Kark, the caloric requirement caused by thermoregulation should be increased or decreased by 5% when the temperature varies by + or – 10 degrees in relation to an average considered to be normal.

The 4650 kcal lost will be made up in the evening or the next day by eating more and richer food. However, it is difficult to exceed a daily intake of 4,000 kcal, so there will be a calorie deficit after 5 to 6 hours of exercise, which will be made up by fat loss.

While it is generally accepted that exercise nutrition should be rich in carbohydrates, the importance of these varies from one specialist to another. In my opinion, the proportion of carbohydrates, lipids and proteins is not the same depending on whether you are doing a one- or two-day race or a race lasting several days at altitude. As a rough guide, we could give the following proportions:

Nutrients one week 2 days
Carbohydrates 70% 55%
Lipids 20% 30%
Proteins 10% 15%

In addition, it is important to respect the following ratios:

Calories from refined sugars / Total calories < or = 1/10

Animal proteins / Plant proteins > or = 1

Animal fat / Plant fat < or = 3/5

Many books dealing with exercise nutrition offer menus and publish calorie equivalence tables. Reproducing this information would go beyond the scope of this site. All we need to do is give you the following advice.

The day before a race, preferably eat slow carbohydrates in the form of pasta (not overcooked), rice or potatoes.

On the morning of the race, eat some flour (oatmeal, Bircher muesli, wholemeal bread, etc.), cheese and oilseeds (walnuts, almonds, etc.), and above all drink enough.

During the race, eat fast carbohydrates (especially fructose) in the form of dried fruit, fruit pastes, dates, agglomerated tablets, etc., and… drink regularly! When you return from the race, replenish your reserves with fresh meat and vegetables.

But above all, don’t base your menu solely on dietary recommendations, eating according to your own tastes and desires is just as important.

—Food rations—

 

The composition of a food ration can be determined on the basis of estimated calorie requirements.

Outside of racing, a mountaineer should consume 3500 kcal/day. The table below gives an indication of the quantity (in grams) of nutrients to be consumed.

Nutrients Breakdown kcal kcal/g Grams
Carbohydrates 55% 1950 4 480
Lipids 30% 1050 9 120
Protein 15% 525 4 130
Total 100% 3500

Rations according to nutrients​

For a stay at altitude of more than two or three days, it’s a good idea to take extra salts (sodium, potassium) and possibly vitamins B1, B2 and C.

—Drink—

 

During exercise, we recommend drinking 100 to 120 ml of fluid every 20 minutes. A mixture of water (1 litre) + squeezed lemons (2) + honey (4 teaspoons) + salt (200 to 400 mg) is recommended.

Remember that drinking is more important than eating. If you’re on a long run, take a small stove to melt the snow and drink warm. A survival ration at the bottom of your pack can also help.

Énergie musculaire / Muscular energy

Agressions liées à l’altitude / Altitude-related aggressions

Agressions de l’organisme liées à l’altitude

Ci-dessous nous allons traiter des agressions subies par l’organisme et
des moyens à mettre en œuvre pour réaliser un nouvel équilibre compatible avec la vie en altitude.

♦ Augmentation du froid pouvant provoquer des lésions

♦ Baisse de la pression atmosphérique pouvant provoquer le « mal des montagnes »

♦ Baisse de l’humidité atmosphérique

♦ Augmentation du rayonnement

—Le froid—

 

La sensation de froid est due à la vitesse de refroidissement de la surface de la peau.

Trois facteurs influent sur la vitesse de refroidissement : la température, la force du vent, et l’humidité de l’air.

La température baisse en moyenne de 0.8 degré par 100 mètres de dénivelé positif.

Le vent s’intensifie avec l’altitude.

En revanche, l’humidité de l’air diminue.
Vers 2000 mètres l’humidité relative a diminué de moitié par rapport au niveau de la mer, et des trois-quarts à 4000 mètres. Ce facteur de refroidissement diminue donc au fur et à mesure que l’on monte. Il faut savoir que la conduction thermique de l’eau est 20 fois supérieure à celle de l’air, ce qui explique qu’un froid humide est plus difficile à supporter qu’un froid sec.

L’homme ne peut vivre que dans une fourchette de température très étroite autour de 37 degrés. Il doit donc constamment gérer son capital thermique. Quand sous l’effet du froid les pertes de chaleur dépassent les gains, l’organisme va réagir de deux façons, il va : limiter les pertes en diminuant le débit sanguin cutané, et augmenter la production interne de chaleur.

 

Diminution du débit sanguin cutané

La peau contrôle en permanence les échanges thermiques de notre corps avec l’extérieur. Pour préserver les organes vitaux d’une baisse dangereuse de température, la peau va diminuer son irrigation sanguine. Le bénéfice est double: (1) une peau froide constitue une barrière efficace contre les pertes de chaleur, car moins irriguée elle est moins conductrice de chaleur; (2) le sang ne circulant plus en surface et dans les extrémités, il se refroidit moins.

Production interne de chaleur

La thermogenèse peut être volontaire. L’exercice physique est un bon moyen de se réchauffer mais il consomme de l’énergie. Les aliments apportent en plus de leur valeur nutritionnelle un gain de chaleur à la digestion.
Elle peut être aussi involontaire. Le frisson est une contraction musculaire involontaire visant à produire de la chaleur. La sécrétion hormonale intervient dans la lutte contre le froid en augmentant les métabolismes.

Les lésions dues au froid

♦  Gelures     ♦  Hypothermie

Les gelures

La gelure est une brûlure par le froid. Les gelures affectent « l’écorce » du corps, c’est à dire la peau et les extrémités. Elles ne menacent pas directement la vie. En fait, c’est comme si « l’écorce » se sacrifiait pour préserver les organes vitaux.

Ce qui fait le danger des gelures c’est qu’elles s’installent sans prévenir, de façon progressive et insidieuse. Lorsqu’il y a risque de gelure, chaque membre de la cordée doit observer ses compagnons afin de déceler une éventuelle apparition de plaques blanchâtres sur le nez, les joues ou les oreilles. Ces gelures, si elles sont fréquentes ne sont jamais très graves.

Plus graves sont les gelures des doigts et des orteils. Il faut se souvenir que lorsqu’il y a du vent des gelures peuvent survenir assez rapidement. L’humidité est un facteur aggravant.

Températures ressenties en fonction du vent
Vitesse du vent (Km/h)
Température ressentie  (°C)
0 5 0 -5 -10 -15 -20
5 4 -2 -7 -13 -19 -24
10 3 -3 -9 -15 -21 -27
15 2 -4 -11 -17 -23 -29
20 1 -5 -12 -18 -24 -30
30 0 -7 -14 -20 -26 -33
50 -2 -8 -15 -22 -29 -35
70 -2 -9 -16 -23 -30 -37

-10 à -24: La peau nue exposée ressent le froid. Risque d’hypothermie si l’exposition est de longue durée et sans protection. Porter plusieurs couches de vêtements, un chapeau et des gants.

-25 à -37: Risque de gel de la peau (gelure grave). Surveiller tout engourdissement ou blanchiment de la figure, des doigts, des oreilles et du nez. Risque d’hypothermie si l’exposition est d’assez longue durée et sans protection. Porter plusieurs couches de vêtements, un bonnet et des gants chauds. Couvrir le visage.

Ne jamais frictionner des membres gelés car les tissus sont fragiles, bien qu’ils soient insensibles. Ne jamais réchauffer à la chaleur d’une flamme car la température est trop élevée.

Une règle importante: Il ne faut entreprendre le réchauffement d’un membre gelé que si l’on est sûr de pouvoir entretenir un réchauffage constant et suffisant jusqu’à l’évacuation. Un réchauffage lent et insuffisant, souvent suivi de re-gelure fait encourir de sérieuses complications. Il faut savoir qu’une extrémité réchauffée est inutilisable et le montagnard devient un impotent.

Au vu des expériences vécues et des constatations médicales, on peut marcher longtemps avec des pieds gelés sans risquer davantage de complications.

Ne pas hésiter à organiser l’évacuation

L’hypothermie

L’hypothermie commence lorsque la production de chaleur par l’organisme ne couvre plus les pertes caloriques. Des lésions par hypothermie peuvent donc survenir par des températures supérieures à zéro degré. Il faut se souvenir que la perte de chaleur corporelle n’est pas seulement fonction de la température, mais surtout du vent et dans une moindre mesure de l’humidité.
Il est vital de rester calme et bien maîtriser la situation afin d’éviter un gaspillage de calories. Les décharges d’adrénaline dues au stress et à la panique brûlent très rapidement les réserves de l’organisme. Il est arrivé que des randonneurs peu expérimentés perdus en moyenne montagne meurent en une nuit. Boire, manger et rester calme aideront à sortir de cette mauvaise situation.

La perte de chaleur moyenne, au repos et sans vent, est estimée à 2.8 degrés/heure dans la neige et 4.1 degrés heure en plein air. Après une heure trois quart passé dans la neige, sous une avalanche par exemple, le corps est à 32 degrés, température à laquelle commencent les perturbations physiques. Après quatre heures un quart, le corps est à 25 degrés et il y a risque de mort.

Le diagnostic est en général évident. Jusqu’à 35 degrés, l’individu reste conscient et peut décrire ses sensations. Au dessous de 33 degrés, les idées ne sont plus très claires. La peau est froide, le visage livide, le pouls est faible et rapide. Par moment le malade est agité de tremblements.

Il faut tout de suite soustraire le malade du froid. Lui mettre des habits secs, se mettre avec lui dans un duvet préchauffé, lui donner des boissons chaudes et sucrées, placer des gourdes d’eau chaude sous les aisselles et entre les cuisses. Surtout éviter un brassage rapide du volume sanguin entre la périphérie froide et le centre resté plus chaud. Pas de frictions, pas de mouvements et… pas d’alcool.

L’hypothermie est une urgence médicale !

—Baisse de la pression atmosphérique—

 

Lorsque l’altitude augmente la pression atmosphérique diminue et, parallèlement, celle de l’oxygène aussi. A 2500 mètres, la pression de l’oxygène n’est plus que les trois quarts de ce qu’elle est au niveau de la mer, à 5500 mètres la moitié et à 8500 mètres le tiers. Or, la pression est la seule force qui fait progresser l’oxygène de l’air ambiant aux cellules de l’organisme.

Pour éviter l’hypoxie (oxygénation insuffisante) et les risques de mal des montagnes, une adaptation des mécanismes physiologiques va s’effectuer au niveau respiratoire avec une augmentation du volume de l’air inspiré, au niveau sanguin avec une augmentation du nombre de globules rouges et enfin au niveau cellulaire, en permettant une meilleure libération de l’oxygène de son transporteur.

Le mal des montagnes regroupe un ensemble de symptômes qui se manifestent à des degrés divers selon les personnes. Il se manifeste généralement par des maux de tête, des nausées, un manque d’appétit, des étourdissements et des insomnies. Dans la majorité des cas, tout rentre dans l’ordre au bout de quelques jours.
L’apparition de vomissements, la diminution du débit urinaire et la persistance de violents maux de tête malgré l’aspirine, sont les manifestations d’un oedème cérébral.
Des difficultés respiratoires, la toux, un sentiment d’oppression dans la cage thoracique, la faiblesse et, finalement, la fièvre sont les manifestations d’un oedème pulmonaire.

Le mal aigu des montagnes (le MAM) peut affecter les personnes à partir d’une altitude de 2000 mètres déjà. Les symptômes apparaissent de 4 à 8 heures après l’arrivée en altitude. Ils évoluent en 3 à 4 jours. Les enfants sont particulièrement vulnérables.

Pour prévenir le MAM il faut boire abondamment et avoir une alimentation de type hyper glucidique. Une progression lente est le meilleur moyen de minimiser les risques.

En cas de doute, il faut impérativement descendre,
à une altitude inférieure d’au moins 500 mètres.

—Baisse de l’humidité atmosphérique—

 

La quantité de vapeur d’eau contenue dans l’air diminue avec l’altitude. A 4000 mètres, la tension de vapeur d’eau ne représente plus que le quart de sa valeur au niveau de la mer. Si on ajoute à cela que le volume d’eau contenu dans l’air est plus faible aux températures basses qu’aux températures élevées, il devient manifeste que l’air qui entoure le montagnard est sec. Cet air sec augmente la déshydratation contre laquelle l’organisme n’a aucune protection. Cet air sec et froid est aussi à l’origine de l’irritation des voies respiratoires et des maux de gorge.

La déshydratation a une conséquence directe sur la performance physique.

Une perte d’eau de 2 % du poids du corps (soit un litre et demi pour 80 kilos)
diminue la performance de 20 %

—Augmentation du rayonnement—

 

Les rayons dont il faut se protéger sont les Ultra-Violets (UV). Il y a trois sortes d’UV: les UVC, UVB et UVA par ordre décroissant de nocivité. Les UVC sont arrêtés par l’atmosphère et ne nous atteignent pratiquement pas. Par contre toute exposition prolongée aux UVB et UVA va provoquer des brûlures de la peau et des yeux.

Plus on s’élève, plus la couche de protection atmosphérique diminue et le rayonnement UVB augmente. L’intensité du rayonnement augmente de 4% tous les 300 mètres.
En outre, plus le soleil est bas sur l’horizon, plus la traversée atmosphérique est longue et moins intense est le rayonnement qui parvient jusqu’au sol. Il y a donc un maximum d’UVB entre 11 h et 14 h. Les rayons ne tombent pas tout droit sur la terre. Ils sont diffusés par l’air, les particules de vapeur d’eau et de poussière.

Si les alto-cumulus de moyenne altitude absorbent la majeure partie des UV, les cirrus de haute altitude qui donnent un ciel gris très lumineux transmettent presque autant d’UV qu’un ciel clair. La réflexion du sol dépend de sa nature, elle peut être importante (jusqu’à 90% sur la neige).

Altitude-related stresses on the body

Below we look at the stresses on the body and how to achieve a new balance compatible with life at altitude.

♦ Increased cold can cause injury

♦ Decrease in atmospheric pressure may cause « mountain sickness

♦ Decrease in atmospheric humidity

♦ Increased radiation

—Cold weather—

 

The sensation of cold is due to the rate at which the surface of the skin cools.

Three factors influence the rate of cooling: temperature, wind strength and air humidity.

The temperature drops by an average of 0.8 degrees per 100 metres of positive ascent.

The wind increases with altitude.

On the other hand, air humidity is falling.
At around 2,000 metres, relative humidity is half that at sea level, and three-quarters at 4,000 metres. This cooling factor therefore decreases as you climb. It should be remembered that water is 20 times more thermally conductive than air, which explains why it is more difficult to bear a damp cold than a dry one.

Humans can only live within a very narrow temperature range of around 37 degrees. We must therefore constantly manage our thermal capital. When the cold causes heat loss to exceed heat gain, the body reacts in two ways: it limits heat loss by reducing cutaneous blood flow, and it increases internal heat production.

 

Decreased cutaneous blood flow

The skin constantly controls our body’s heat exchange with the outside world. To protect vital organs from a dangerous drop in temperature, the skin reduces its blood supply. The benefits are twofold: (1) cold skin acts as an effective barrier against heat loss, as it has less blood supply and conducts less heat; (2) as blood no longer circulates on the surface and in the extremities, it cools less.

Internal heat production

Thermogenesis can be voluntary. Physical exercise is a good way of warming up, but it consumes energy. In addition to their nutritional value, foods also provide heat gain during digestion.
It can also be involuntary. Shivering is an involuntary muscle contraction designed to produce heat. Hormone secretion plays a part in combating the cold by increasing metabolisms.

Cold injuries

♦ Frostbite ♦ Hypothermia

Frostbite

Frostbite is a cold burn. Frostbite affects the « crust » of the body, i.e. the skin and extremities. It is not a direct threat to life. In fact, it is as if the « bark » were sacrificing itself to preserve the vital organs.

The danger of frostbite is that it sets in without warning, gradually and insidiously. When there is a risk of frostbite, each member of the rope party must observe his companions to detect any appearance of whitish patches on the nose, cheeks or ears. Frostbite, though frequent, is never very serious.

More serious are frostbite of the fingers and toes. Remember that frostbite can occur quite quickly in windy conditions. Humidity is an aggravating factor.

Wind chill temperatures
Wind speed (Km/h)
Temperature felt (°C)
0 5 0 -5 -10 -15 -20
5 4 -2 -7 -13 -19 -24
10 3 -3 -9 -15 -21 -27
15 2 -4 -11 -17 -23 -29
20 1 -5 -12 -18 -24 -30
30 0 -7 -14 -20 -26 -33
50 -2 -8 -15 -22 -29 -35
70 -2 -9 -16 -23 -30 -37

-10 to -24: Exposed bare skin feels the cold. Risk of hypothermia if exposed for long periods without protection. Wear several layers of clothing, a hat and gloves.

-25 to -37: Risk of skin freezing (severe frostbite). Watch for numbness or whitening of the face, fingers, ears and nose. Risk of hypothermia if exposure is long enough and unprotected. Wear several layers of clothing, a hat and warm gloves. Cover your face.

Never rub frozen limbs as the tissues are fragile, even though they are insensitive. Never heat with an open flame, as the temperature is too high.

An important rule: a frozen limb should only be rewarmed if you are sure you can maintain constant and sufficient rewarming until evacuation. Slow and insufficient rewarming, often followed by refreezing, can lead to serious complications. It should be remembered that a reheated extremity is unusable and the mountaineer becomes impotent.

In the light of experience and medical findings, you can walk for a long time with frozen feet without risking further complications.

Don’t hesitate to organise an evacuation

Hypothermia

Hypothermia begins when the body’s production of heat no longer covers the loss of calories. Hypothermic injuries can therefore occur at temperatures above zero. It is important to remember that body heat loss is not only a function of temperature, but also of wind and, to a lesser extent, humidity.

It’s vital to remain calm and in control of the situation to avoid wasting calories. The adrenalin rushes caused by stress and panic burn up the body’s reserves very quickly. Inexperienced hikers lost in mid-mountain terrain have been known to die overnight. Drinking, eating and staying calm will help you get out of this bad situation.

The average heat loss, at rest and with no wind, is estimated at 2.8 degrees/hour in the snow and 4.1 degrees/hour in the open air. After an hour and three quarters spent in the snow, under an avalanche for example, the body is at 32 degrees, the temperature at which the physical disturbances begin. After four and a quarter hours, the body is at 25 degrees and there is a risk of death.

The diagnosis is usually obvious. Up to 35 degrees, the individual remains conscious and can describe his sensations. Below 33 degrees, ideas are no longer very clear. The skin is cold, the face livid, the pulse weak and rapid. At times the patient is agitated by tremors.

The patient must be taken out of the cold immediately. Dress him in dry clothes, lie down with him in a pre-warmed duvet, give him hot, sweet drinks and place bottles of hot water under his armpits and between his thighs. Above all, avoid rapid mixing of blood volume between the cold periphery and the warmer centre. No friction, no movement and… no alcohol.

Hypothermia is a medical emergency!

—Drop in atmospheric pressure—

 

As altitude increases, atmospheric pressure decreases and, at the same time, so does oxygen pressure. At 2500 metres, oxygen pressure is only three quarters of what it is at sea level, at 5500 metres half and at 8500 metres one third. Yet pressure is the only force that moves oxygen from the ambient air to the body’s cells.

To avoid hypoxia (insufficient oxygenation) and the risk of mountain sickness, physiological mechanisms will adapt at respiratory level by increasing the volume of air inspired, at blood level by increasing the number of red blood cells and finally at cellular level, by allowing better release of oxygen from its carrier.

Mountain sickness brings together a range of symptoms that manifest themselves to varying degrees depending on the individual. It generally manifests itself as headaches, nausea, lack of appetite, dizziness and insomnia. In most cases, everything returns to normal after a few days.
The appearance of vomiting, reduced urine output and the persistence of violent headaches despite aspirin are signs of cerebral oedema.
Difficulty breathing, coughing, a feeling of tightness in the chest, weakness and, finally, fever are the signs of pulmonary oedema.

Acute mountain sickness (AMS) can affect people at altitudes of 2000 metres and above. Symptoms appear 4 to 8 hours after arriving at altitude. They progress over 3 to 4 days. Children are particularly vulnerable.

To prevent ASM, you need to drink plenty of fluids and eat a high-carbohydrate diet. Slow progression is the best way to minimise the risks.

If in doubt, you must descend, at least 500 metres lower.

—Lower atmospheric humidity—

 

The amount of water vapour in the air decreases with altitude.

At 4000 metres, water vapour pressure is only a quarter of its value at sea level. If we add to this the fact that the volume of water contained in the air is lower at low temperatures than at high temperatures, it becomes clear that the air surrounding the mountain dweller is dry.

This dry air increases dehydration, against which the body has no protection. This dry, cold air also causes irritation of the respiratory tract and sore throats.

Dehydration has a direct impact on physical performance.

A water loss of 2% of body weight (i.e. one and a half litres for 80 kilos)
reduces performance by 20%

—Increased radiation—

 

The rays we need to protect ourselves from are ultraviolet rays (UV). There are three types of UV: UVC, UVB and UVA, in decreasing order of harmfulness. UVC is blocked by the atmosphere and hardly reaches us at all. However, prolonged exposure to UVB and UVA will cause burns to the skin and eyes.

The higher you go, the more the layer of atmospheric protection diminishes and UVB radiation increases. The intensity of the radiation increases by 4% every 300 metres.

What’s more, the lower the sun is on the horizon, the longer it takes to cross the atmosphere and the less intense the radiation that reaches the ground. There is therefore a maximum of UVB between 11am and 2pm. The rays do not fall straight to earth. They are scattered by the air, water vapour and dust particles.

While mid-altitude alto-cumulus clouds absorb most of the UV, high-altitude cirrus clouds, which give a very bright grey sky, transmit almost as much UV as a clear sky. Reflection from the ground depends on its nature, and can be significant (up to 90% on snow).

Énergie musculaire / Muscular energy

Augmentation du rayonnement / Increased radiation

Augmentation du rayonnement

Les rayons dont il faut se protéger sont les UltraViolets (UV). Il y a trois sortes d’UV: les UVC, UVB et UVA par ordre décroissant de nocivité. Les UVC sont arrêtés par l’atmosphère et ne nous atteignent pratiquement pas. Par contre toute exposition prolongée aux UVB et UVA va provoquer des brûlures de la peau et des yeux.

Plus on s’élève, plus la couche de protection atmosphérique diminue et le rayonnement UVB augmente.

L’intensité du rayonnement augmente de 4% tous les 300 mètres.

En outre, plus le soleil est bas sur l’horizon, plus la traversée atmosphérique est longue et moins intense est le rayonnement qui parvient jusqu’au sol. Il y a donc un maximum d’UVB entre 11 h et 14 h. Les rayons ne tombent pas tout droit sur la terre. Ils sont diffusés par l’air, les particules de vapeur d’eau et de poussière.

Si les alto-cumulus de moyenne altitude absorbent la majeure partie des UV, les cirrus de haute altitude qui donnent un ciel gris très lumineux transmettent presque autant d’UV qu’un ciel clair. La réflexion du sol dépend de sa nature, elle peut être importante (jusqu’à 90% sur la neige).

Increased radiation

The rays we need to protect ourselves from are ultraviolet rays (UV). There are three types of UV: UVC, UVB and UVA, in decreasing order of harmfulness. UVC is blocked by the atmosphere and hardly reaches us at all. However, prolonged exposure to UVB and UVA will cause burns to the skin and eyes.

The higher you go, the more the layer of atmospheric protection diminishes and UVB radiation increases.

The intensity of the radiation
increases by 4% every 300 metres.

What’s more, the lower the sun is on the horizon, the longer it takes to cross the atmosphere and the less intense the radiation that reaches the ground. There is therefore a maximum of UVB between 11am and 2pm. The rays do not fall straight to earth. They are scattered by the air, water vapour and dust particles.

While mid-altitude alto-cumulus clouds absorb most of the UV, high-altitude cirrus clouds, which give a very bright grey sky, transmit almost as much UV as a clear sky. Reflection from the ground depends on its nature, and can be significant (up to 90% on snow).

Énergie musculaire / Muscular energy

Baisse de l’humidité atmosphérique / Decrease in atmospheric humidity

Baisse de l’humidité atmosphérique

La quantité de vapeur d’eau contenue dans l’air diminue avec l’altitude.

A 4000 mètres, la tension de vapeur d’eau ne représente plus que le quart de sa valeur au niveau de la mer. Si on ajoute à cela que le volume d’eau contenu dans l’air est plus faible aux températures basses qu’aux températures élevées, il devient manifeste que l’air qui entoure le montagnard est sec.

Cet air sec augmente la déshydratation contre laquelle l’organisme n’a aucune protection. Cet air sec et froid est aussi à l’origine de l’irritation des voies respiratoires et des maux de gorge.

La déshydratation a une conséquence directe sur la performance physique.

Une perte d’eau de 2 % du poids du corps (soit un litre et demi pour 80 kilos) diminue la performance de 20 % !

Decrease in atmospheric humidity

The amount of water vapour in the air decreases with altitude.

At 4000 metres, water vapour pressure is only a quarter of its value at sea level. If we add to this the fact that the volume of water contained in the air is lower at low temperatures than at high temperatures, it becomes clear that the air surrounding the mountain dweller is dry.

This dry air increases dehydration, against which the body has no protection. This dry, cold air also causes irritation of the respiratory tract and sore throats.

Dehydration has a direct impact on physical performance.

A water loss of 2% of body weight (i.e. one and a half litres for 80 kilos) reduces performance by 20%!